44 research outputs found

    Solvent-Driven Supramolecular Wrapping of Self-Assembled Structures

    Get PDF
    Self‐assembly relies on the ability of smaller and discrete entities to spontaneously arrange into more organized systems by means of the structure‐encoded information. Herein, we show that the design of the media can play a role even more important than the chemical design. The media not only determines the self‐assembly pathway at a single‐component level, but in a very narrow solvent composition, a supramolecular homo‐aggregate can be non‐covalently wrapped by a second component that possesses a different crystal lattice. Such a process has been followed in real time by confocal microscopy thanks to the different emission colors of the aggregates formed by two isolated PtII complexes. This coating is reversible and controlled by the media composition. Single‐crystal X‐ray diffraction and molecular simulations based on coarse‐grained (CG) models allowed the understanding of the properties displayed by the different aggregates. Such findings could result in a new method to construct hierarchical supramolecular structures

    Biostimulant effects of lanthanum (La) on crop growth, yield, and quality

    Get PDF
    Objective: To analyze the various effects that the use of La as an inorganic biostimulant has on growth, yield and quality of different crop plants. Design/methodology/approach: A search in recent literature related to the effects of lanthanum on various economically important crops was conducted. Subsequently, the most relevant information was selected, analyzed and grouped by type of effect. Results: The addition of lanthanum at low doses has been tested in different crop plants. It has been proven that La increases growth, development and quality in various species. Likewise, positive effects have been reported in germination, in the absorption of nutrients, in mitigating the deficiencies of some essential elements, as well as in the promotion of physiological and biochemical responses. Limitations/implications of the study: The analyzed results have been generated in a great diversity of plant species, under different production systems, with dissimilar doses, as well as with different sources and application methods. This situation represents a challenge, since it hinders the possibility to issue general recommendations. Findings/conclusions: Lanthanum improves yield and quality, as well as some physiological, biochemical and nutritional responses in different crops of economic importance

    Análisis Comparativo del Posicionamiento Preciso Utilizando el Receptor de Bajo Costo GNSS ZED-F9P en Conjunto con la Antena BEIBT300 y Diferentes Modelos de Antena de Orden Geodésico

    Get PDF
    Con el avance de la Geodesia y la mejora de las especificaciones técnicas de los receptores de bajo costo, los GNSS abren nuevas alternativas para investigar las capacidades técnicas y rendimiento real que proveen este tipo de receptores para diferentes propósitos geodésicos. En este contexto, la precisión alcanzable fue analizada usando el receptor de bajo costo GNSS ZED-F9P en conjunto con dos antenas de orden geodésico (ASH701975.01B y LEIAS10 NONE) y una antena de bajo costo (BEIBT300 NONE). Las observaciones GNSS fueron llevadas a cabo en un periodo de dos días para cada modelo de antena. El análisis fue realizado en tiempos de observación de 12, 6 y 1 h, respectivamente. Estas observaciones fueron procesadas usando el método relativo estático mediante la inclusión de una estación de referencia continua del Instituto Nacional de Estadística y Geografía, la cual está localizada a una distancia aproximada de 4 km. Los resultados demuestran que la mayor precisión es lograda en un periodo de 12 h, con diferencias mínimas de 3 cm para la componente Norte y 33 cm para la vertical. En este sentido, la solución menos precisa es obtenida en el periodo de 1 h resultando diferencias de 70 cm, 46 cm y 2.3 m para la componente Norte, Este y vertical respectivamente.   With advancements in geodesy and enhancements in the technical specifications of low-cost receivers, GNSS opens up new avenues for investigating the capabilities and performance provided by these receivers for various geodetic purposes. In this context, the precision achievable using the low-cost GNSS receiver ZED-F9P in conjunction with two geodetic antennas (ASH701975.01B and LEIAS10 NONE) and a low-cost antenna (BEIBT300 NONE) was analyzed. GNSS observations were conducted over a 2-day period for each antenna model. The analysis involved observation durations of 12, 6, and 1 h. These observations were processed using the static relative method alongside a continuously operating GNSS station from the Active National Geodetic Network of the National Institute of Statistics and Geography, situated at ~4 km. The results demonstrate that the highest precision was achieved over a 12 h period, with minimal differences of 3 cm for the North component and 33 cm for the vertical component. Conversely, the least accurate solution was obtained within a 1 h observation period, resulting in differences of up to 70 cm, 46 cm, and 2.3 m for the North, East, and vertical components, respectively

    Silicon increases seed weight and initial seedling growth of maize under non-stress conditions, and improves the index of velocity of germination under salt stress conditions

    Get PDF
    Salinity is one of the most critical factors affecting agriculture worldwide. The application of beneficial elements like silicon (Si) is one of the alternatives to mitigate its effects. In this research, we evaluated the effect of Si applied during seed imbibition on mitigating the negative effects caused by salinity during the germination and initial growth phases of maize (Zea mays L.) SB-308 seedlings. Seed pre-treatment during the imbibition was made with 0.0-, 1.5- and 3.0-mM Si. Afterwards, seeds that were imbibed were placed in plastic containers and treated with 0, 80, 160, and 240 mM NaCl. The evaluated concentrations of Si and NaCl gave rise to 12 treatments. Pre-treated seeds with 3 mM Si had an increase of weight after imbibition, 5.1% higher than the control. The treatments obtained from combining NaCl and Si levels did not affect the total and relative germination. The radicle length increased by 13.6% with 3 mM Si compared to the control. Conversely, it was lower with increasing salinity. These trends were observed in plant height. The interaction of the study factors produced an increase in the radicle length in the interval from 0 to 160 mM NaCl, when the Si dose was increased. However, there were no significant differences among equal levels of salinity without Si. It is concluded that Si increased the absorption of water during the imbibition and raised the index of velocity of germination under salinity, except in the dose 240 mM NaCl. Likewise, the pre-treatment of seeds with Si tends to increase radicle length under saline conditions

    El ácido salicílico aumenta la acumulación de macroy micronutrientes en chile habanero

    No full text
    Abstract The results of the effect of salicylic acid (AS) on the nutritional absorption of Capsicum chinense are presented. 1 μM of AS was sprayed on the canopy of habanero pepper seedlings and distilled water as control. The results obtained show that aspersions of 1μM of salicylic acid (SA) significantly increase the length, weight, weight and dry weight of roots, stems, leaves and fruits of this species, as well as the levels of nitrogen (N), phosphorus (P) ) and potassium (K) in the different organs of the plants at the time of harvest. The accumulation of N, P and K was higher in fruits (116, 110 and 97%), leaves (45.5, 39.4 and 29.1%), root (52.6, 17.0 and 29.4%) and in stem (5, 39.4 and 28.3%) on the values of the control plant. The levels of copper, zinc, manganese, iron, boron, calcium and magnesium were also increased in most tissues by the effect of AS. It is proposed that the positive effect of the AS of increasing the size of the roots favors the absorption and accumulation of macro and micronutrients in the tissues of the plant.Resumen Se presentan los resultados del efecto del ácido salicílico (AS) en la absorción nutrimental de Capsicum chinense. Se asperjó 1 µM de AS, al dosel de plántulas de chile habanero y agua destilada como control. Los resultados obtenidos demuestran que aspersiones de 1µM de ácido salicílico(AS) incrementa significativamente la longitud, peso freso y peso seco de raíces, tallos, hojas y frutos de esta especie, al igual que los niveles de nitrógeno (N), fósforo (P) y potasio (K) en los diferentes órganos de las plantas al momento de la cosecha. La acumulación de N, P y K fue superior en frutos (116, 110 y 97%), hojas (45.5, 39.4 y 29.1%) raíz (52.6, 17 y 29.4%) y en tallo (5, 39.4 y 28.3%) sobre los valores de la planta control. Los niveles de cobre, zinc, manganeso, hierro, boro, calcio y magnesio también fueron incrementados en la mayoría de los tejidos por el efecto del AS. Se propone que el efecto positivo del AS de incrementar el tamaño de las raíces favorece la absorción y acumulación de macro y micronutrientes en los tejidos de la planta
    corecore